

Lecture 8

Processor Instructions
and Addressing

Text: Chapter 6

Computers and Programming

8.1

Assembly Language Statements

 [identifier] OPERATION operands

Examples of statements we have seen so far:

 MOV AX,BX
 ADD AX,Salary

The instruction operations are written using meaningful
symbols called mnemonics (“MOV”, “ADD”)

The operands will vary depending on the particular
instruction.

Categories of Operations (partial list!)

• Arithmetic
• Information movement
• Comparison
• Flow control
• Logical Operations
• Processor Control
• Stack Operations
• String Operations

Computer Science 141

8.2

Categories of Operands

• Register Operands
 The operand is one of the CPU registers, and is

identified by its reserved name:

 MOV AX,BX

• Immediate Operands
 The second operand is a constant value or

expression whose length is determined by the
length of the first operand

 MOV AX,1996h
 MOV AL,19h

• Direct Memory Operands
 One operand is a register, the other is a memory

location (labeled with an identifier).

 MOV AX,Salary
 MOV Count,CX
 ADD AX,DS:[1998h]
 INC BYTE PTR [0045h]

Computers and Programming

8.3

• Indirect Memory Operands
 A register is loaded with the address of an

operand, and then the register alone is used as
an operand in an instruction.

 MOV BX,OFFSET SALARY
 MOV [BX],1234h

• Address Displacement (Indexing)

Uses the SI and DI (index) registers. The
contents of the index register are added to the
offset

MOV SI,4
MOV AL,RateTable[SI]

 RateTable

 02 04 06 08 0A 0C 0E

RateTable +0 +1 +2 +3 +4 +5 +6

Computer Science 141

8.4

Some introductory instructions

XCHG

Exchange the data values in the two operands. This
eliminates the need for a temporary copy.

 XCHG AL,AH
 XCHG AX,SALARY

LEA

Load Effective (Offset) Address will load a register
with the address of an operand. The address in that
register can later be used to refer to the operand
indirectly.

 LEA BX,SALARY
 MOV GROSS_PAY,[BX]

INC and DEC

INCrement and DECrement will add one and subtract
one, respectively, from either a memory location or a
register.
 INC AX
 DEC SALARY

Important:
How is this different from
 MOV GROSS_PAY,BX

Computers and Programming

8.5

 page 60,132
TITLE P06MOVE (EXE) Extended move operations
;---
 .MODEL SMALL
 .STACK 64
;---
 .DATA
NAME1 DB ’ABCDEFGHI’
NAME2 DB ’JKLMNOPQR’
;---
 .CODE
BEGIN PROC FAR
 MOV AX,@data ;Initialize segment
 MOV DS,AX ; registers
 MOV ES,AX

 MOV CX,09 ;Init. to move 9 chars
 LEA SI,NAME1 ;Init. address of NAME1
 LEA DI,NAME2 ; and NAME2
B20:
 MOV AL,[SI] ;Get character from NAME1,
 MOV [DI],AL ; move it to NAME2
 INC SI ;Incr. next char in NAME1
 INC DI ;Incr. next pos’n in NAME2
 DEC CX ;Decrement loop count
 JNZ B20 ;Count not zero? Yes, loop

 MOV AX,4C00H ;Exit to DOS
 INT 21H
BEGIN ENDP
 END BEGIN

Example of MOV instructions with addressing

Computer Science 141

8.6

Some notes about addressing

Alignment

While a word may be any two bytes of memory, a word
brought through the bus to or from the CPU must start with
an even numbered byte.

Thus, loading a word whose first byte is at an odd address
involves moving two words across the bus.

Processors with 32-bit data busses (80386 and higher)
prefer addresses evenly divisible by four.

This does not cause errors; it only affects program
performance. It can be resolved with the assembler’s
ALIGN directive.

04 0C 18 00

Odd address

First cycle Second cycle

00 18

Computers and Programming

8.7

Near and Far Addresses

A NEAR address is within the same segment and thus
requires only an offset.

A FAR address is one which is in a different segment, so
in addition to the offset, the segment address (in a
segment register) is required.

NEAR FAR

Segment Override

Code usually comes from the code segment (CS:IP), and
data from the data segment (DS:offset). An alternative
segment can be given explicitly:

 MOV AX,ES:[BX]

Here, the data will come from the Extra Segment.

MOV AX,BX

CS
 JMP SORT

CS

SORT:
 XCHG AX,BX

Computer Science 141

8.8

Exercises - Lecture 8

Write a code segment that will add the first, third and fifth word of the array of words called
"TheList" as declared in the data segment below. Do it by putting the address of "TheList" in the
SI register, and writing ADD instructions that accumulate the answer in the AX register. For each
instruction, you need to calculate the proper offset to be used with the [SI] register.

DATASG SEGMENT PARA
THELIST DW 3,4,2,7,6,8,9
DATASG ENDS

CODESG SEGMENT PARA
MAIN PROC FAR
 MOV AX,DATASG
 MOV DS,AX

 MOV AX,4C00h
 INT 21h
MAIN ENDP
CODESG ENDS
 END MAIN

Using the same data segment as above, write a code segment that will increase the value in the
first word by one (use INC) and decrease the value in the last word by one (use DEC).

CODESG SEGMENT PARA
MAIN PROC FAR
 MOV AX,DATASG
 MOV DS,AX

 MOV AX,4C00h
 INT 21h
MAIN ENDP
CODESG ENDS

